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A general symmetry analysis of the optical conductivity or scattering tensor is presented and used to rewrite
the conductivity tensor as a sum of linear independent spectra multiplied by simple functions depending on the
local magnetization direction. This allows one to describe the full, magnetization directional dependent,
magneto-optical response of a system in arbitrary symmetry by only a few linear independent fundamental
spectral functions. Using this formalism, we discuss the azimuthal dependence of the resonant x-ray diffracted
intensity on magnetic Bragg reflections. We present several numerical examples at the transition metal L2,3

edge. From these numerical calculations, we can conclude that for realistic parameters several fundamental
spectra, not present in spherical symmetry, become important and should not be neglected. Deviations from the
standard analysis in spherical symmetry become large in cases where orbital order coexists with magnetic
order, even if the orbital order is at a different q vector. In the extreme case of the layered cuprates, one finds
that one is not sensitive to the projection of the magnetic moments onto the plane of the ordered dx2−y2 hole.
Not including the correct crystal symmetry can lead to incorrectly determined magnetic orientations and
structures.
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Resonant x-ray diffraction or reflectivity �RXD� has de-
veloped into a powerful method to study charge, orbital, and
magnetic ordering in transition metal compounds and artifi-
cially created superlattices. In principle, the resonant energy
dependence of the scattering profile and its polarization and
azimuthal dependence contain the information about the lo-
cal magnetic, charge, and orbital order. Obtaining this infor-
mation from such spectra is often still a theoretical and ex-
perimental challenge.

One of the more straightforward methods to analyze mag-
netic Bragg reflections has been presented by Hannon et al.1

and several other authors.2–8 They showed that the azimuthal
intensity dependence can be related to the local orientation of
the magnetic moment by a simple relation. The scattered
intensity is proportional to ���in��out

� � ·m̂�2, whereby �in�out�
is the polarization of the incoming �outgoing� light and m̂ is
a unit vector in the direction of the magnetization. These
relations are used relatively often in the analyses of RXD
nowadays.9 The crux is that these relations are derived in
spherical symmetry and strictly speaking hold only in spheri-
cal symmetry. An extended formalism has been
presented10–12 but not seen a large audience so far. The ques-
tion the present paper addresses is; how large are the changes
in the scattered intensity when the effects of the real crystal
symmetry are included, when is it important to include the
real crystal symmetry, and when one can still use the formu-
las derived in spherical symmetry. We will present a general

symmetry analysis of the conductivity or scattering tensor
including an arbitrary magnetization direction and several
numerical calculations at the transition metal L2,3 edge, in
order to exemplify when deviations from spherical symmetry
become important. We will restrict ourselves to dipole tran-
sitions only. For the numerical calculations, we will neglect
the valence-band spin-orbit coupling. The spin-orbit cou-
pling for the core orbitals �transition metal 2p� is naturally
included. This is in many cases a valid approximation as
valence orbital momenta are often quenched. The numerical
magneto-optical effects presented here are due to the core-
hole spin-orbit coupling, which is at the transition metal L2,3
edge quite large.

A hint for the importance of including the correct crystal
symmetry might be obtained from absorption spectroscopy.
By the optical theorem,13 it is well known that the scattering
tensor F and the conductivity tensor � are related by a factor
of � �F����. Therefore all magneto-optical effects known
from absorption spectroscopy should return in diffraction or
reflectivity experiments. Recently it has been realized that
the symmetric part of the conductivity tensor due to magne-
tism i.e., the magnetic linear dichroism effect is not given by
a single spectrum as in spherical symmetry but behaves more
complicated in cubic or lower symmetries.14–17 For an anti-
ferromagnetic Bragg reflection, the symmetric part of the
scattering tensor does not contribute to the diffracted inten-
sity. How the antisymmetric part of the conductivity tensor
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behaves for less than spherical symmetry is not well known
in the x-ray regime. For infrared and visible wavelengths,
there are several experiments and numerical calculations
showing that for systems with less than cubic symmetry, the
magnetic part of the optical conductivity tensor � becomes
considerably different from what is expected in spherical
symmetry.18–20 One might thus expect that also for x-ray
wavelengths, the spectral line shape of circular dichroism
and magnetic Bragg reflections should be crucially influ-
enced by the crystal symmetry.

To be able to present the results in a consistent picture, we
first introduce a symmetry analysis of the magnetization di-
rection dependence of the conductivity tensor or scattering
tensor. This allows us to define a few linear independent
spectra that describe the entire optical response of a system
independent of the magnetization direction. These spectra we
will call the fundamental spectra in line with the nomencla-
ture as used by van der Laan and Arenholz.21 Within this
paper, we use symmetry labels according to nonmagnetic
point groups. This represents the nonmagnetic part of the
Hamiltonian. The Hamiltonian will furthermore contain a
symmetry breaking sublattice magnetization in an arbitrary
direction, given by m��mx ,my ,mz�.22 The full local point
group belongs to a magnetic point group and is in general
very low due to the arbitrarily orientated magnetization di-
rection. The tensor formalism used is, in principle, valid for
any type of magneto-optical experiment and closely related,
though not entirely equivalent, to methods described in pre-
vious publications.1–12,14–20 A relation between the scattering
tensor on a basis of linear polarized light and a coupled mul-
tipole expansion of the polarization vectors can be found in
the Appendix. The formalism can be used for the description
of the crystal orientation dependence of the Kerr angle in the
infrared regime on CrO2,19 x-ray vectorial magnetometry as
used on thin films to determine the local magnetic
domains,23,24 or the magnetic Bragg diffraction of the cu-
prates at 930–950 eV.25

The first section presents a general derivation of the scat-
tering tensor or conductivity tensor as a function of magne-
tization direction for several different point-group symme-
tries. We will express the scattering tensor as a 3�3 tensor
on the basis of linear polarized light. In the Appendix, we
will relate this notation to the use of coupled spherical ten-
sors often used in the x-ray wavelength. In the second sec-
tion, we will show how these tensors can be rewritten to
simple dot products relating the scattered intensity to the
polarization of the incoming and outgoing light in the same
way as previously presented1 in spherical symmetry. The
third section is reserved for calculations of the fundamental
spectra of several example materials in cubic point-group
symmetry �the symmetry relates to the nonmagnetic point
group the system would poses if no local magnetic moments
were present�. The numerical calculations are done with the
use of crystal-field theory, which is particularly valid for the
Transition metal L2,3 edge of Mott-Hubbard insulators, such
as cuperates, nickelates, manganates or other transition metal
oxides, fluorides, chlorides, etc.26–28 The fourth section pre-
sents results in tetragonal symmetry. Within the conclusions,
we will discuss when deviation from spherical symmetry be-
comes visible in experiment and how the magnetization di-

rection can be deduced from resonant x-ray diffraction ex-
periments.

I. SCATTERING TENSOR OF SYSTEMS WITH
ARBITRARY MAGNETIZATION DIRECTION

The general scattering tensor of a system of triclinic sym-
metry and an arbitrary magnetization is given by

F��� = �Fxx��� Fyx��� Fzx���
Fxy��� Fyy��� Fzy���
Fxz��� Fyz��� Fzz���

� �1�

which defines a nonsymmetric, non-Hermitian, complex ten-
sor. Naturally this tensor can be diagonalized to give a com-
plex basis defining the principal axes and a diagonal tensor.
In general the principal axes will be � dependent.29–31 Even
in high symmetries there will already be a strong � depen-
dence on the principal axes when a magnetization in an ar-
bitrary direction is introduced.32 It is therefore often more
intuitive to stay in a Cartesian basis for the scattering tensor,
with x, y, and z aligned along high-symmetry crystal axes.

Based on general symmetry arguments, the scattering ten-
sor simplifies. We label the local point-group symmetry ac-
cording to nonmagnetic point groups, whereby we take � to
be the set of symmetry operations of this nonmagnetic point
group. In the magnetically ordered phase there is an addi-
tional local magnetization. In the case that the local moment
direction does not coincide with one of the high-symmetry
axes of the nonmagnetic point group, only the identity op-
eration is left of the original symmetry operations as all other
symmetry operations will rotate the local moment. One can
define a new set of symmetry operations �� that rotates first
the entire system and then the local moment, i.e., the spin
and orbital momentum, back. This would be the same as
rotating the system but not the local moment.

In order to define symmetry operations that rotate the sys-
tem but not the local moment, the scattering tensor needs to
be written as a product of a function that is independent of
the direction of the local moment but depends on � and the
polarization and a function that depends purely on the direc-
tion of the local moment. This can be done by expanding
each element of the scattering tensor on spherical harmonics
in the coordinates of the local moment,

F��,�� = 	
k=0

�

	
m=−k

k �Fxx
km Fyx

km Fzx
km

Fxy
km Fyy

km Fzy
km

Fxz
km Fyz

km Fzz
km�Ykm��,�� . �2�

� and � define the direction of the local moment �mx
= �m�cos���sin���, my = �m�sin���sin���, and mz= �m�cos����,
Yk,m is a spherical harmonic function and Fi,j is the �i , j�
component of the scattering tensor on a basis of linear polar-
ized light in the coordinate system of the crystal �	i ,	 j
� 
	x ,	y ,	z��. Note that both the local magnetization direc-
tion as well as the polarization are expressed in the same
Cartesian coordinate system.

Natural dichroism effects due to any crystal symmetry are
included in this formalism.29–31 They are part of the expan-
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sion coefficients with k=0. Any expansion with k�0 be-
comes zero when averaged over all different magnetization
directions. At the transition metal L2,3 edge the natural linear
dichroism for orbital ordered systems can become 100% in
the cuprates but even if there is no orbital order in the ground
state there can already be a substantial dichroism due to te-
tragonal crystal fields as shown, for example, in thin films of
NiO.33 Natural and magnetic dichroic effects can be of the
same order of magnitude.

Finding the symmetry allowed components of the scatter-
ing tensor implies going through all symmetry operations
possible and solving the equation ��F=F. This will lead to a
set of allowed values for the expansion coefficients. For ex-
ample, a C4�

z operation acting on F�� ,��, i.e., rotating the
system but not rotating the magnetization direction, would
give

C4�
zF��,�� = 	

k=0

�

	
m=−k

k �Fyy
km − Fxy

km Fzy
km

− Fyx
km Fxx

km − Fzx
km

Fyz
km − Fxz

km Fzz
km �

�Ykm��,� −
1

2


 �3�

which leads to sets of equations of the form

	k=0
� 	m=−k

k Fyx
kmYkm�� ,��=−	k=0

� 	m=−k
k Fxy

kmYkm�� ,�−1 /2
�,
which have to be solved.

Let us first discuss spherical symmetry. In spherical sym-
metry there should be no � dependence and only terms with
m=0 remain. Furthermore the infinite sum truncates at k=2
due to the triangular equations. This leaves only the expan-
sion coefficients proportional to Y00, Y10, and Y20. For a local
moment in the z direction �m̂= �001�� one gets the known
result,

F�001� =�
F�0� −

1

3
F�2� − F�1� 0

F�1� F�0� −
1

3
F�2� 0

0 0 F�0� +
2

3
F�2�� �4�

and for a local moment in the �x�mx / �m� ,y�my / �m� ,z
�mz / �m�� direction,

F�xyz� =�
F�0� + �x2 −

1

3

F�2� − �z�F�1� + �xy�F�2� �y�F�1� + �xz�F�2�

�z�F�1� + �xy�F�2� F�0� + �y2 −
1

3

F�2� − �x�F�1� + �yz�F�2�

− �y�F�1� + �xz�F�2� �x�F�1� + �yz�F�2� F�0� + �z2 −
1

3

F�2�� . �5�

The result for a local moment in an arbitrary direction could
also be obtained from the tensor of the local moment in the z
direction by rotating the scattering tensor,

R = �cos��� − sin��� 0

sin��� cos��� 0

0 0 1
� · � cos��� 0 sin���

0 1 0

− sin��� 0 cos���
� �6�

then

F�xyz� = RF�001�R
T. �7�

F�1� is related to the gyromagnetic vector by m̂F�1� /�� ıg
and describes the magnetic circular dichroism or the Faraday
effect. The F�2� components describe the magnetic linear di-
chroism. The magneto-optical Kerr Effect is given by both
the F�1� and F�2� spectra depending on the experimental
geometry.

In symmetries lower than spherical the expansion of the
spin direction in spherical harmonics does not truncate at
finite k. This has often been neglected previously but it be-
comes quite clear if one realizes that angular momentum of
the electrons only is not a conserved quantum number in real
crystals. Elements such as F�3�, F�4�, etc., are allowed by
symmetry. There is thus, in principle, an infinite number of
linear independent fundamental spectra. Not all of them are
important and most of them will be very small. Below we
will discus the higher-order expansions in more detail and
give several numerical examples for realistic parameters.
Furthermore, as previously discussed by Carra and Thole10

the fundamental spectra of order k will branch according to
their symmetry representations in the corresponding point
group.

In cubic symmetry �Oh� the scattering tensor becomes
�C4 � �001��,
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F�xyz� =�
Fa1g

�0� + �x2 −
1

3

Feg

�2� − zFt1u

�1� − z�z2 −
3

5

Ft1u

�3� + xyFt2g

�2� yFt1u

�1� + y�y2 −
3

5

Ft1u

�3� + xzFt2g

�2�

zFt1u

�1� + z�z2 −
3

5

Ft1u

�3� + xyFt2g

�2� Fa1g

�0� + �y2 −
1

3

Feg

�2� − xFt1u

�1� − x�x2 −
3

5

Ft1u

�3� + yzFt2g

�2�

− yFt1u

�1� − y�y2 −
3

5

Ft1u

�3� + xzFt2g

�2� xFt1u

�1� + x�x2 −
3

5

Ft1u

�3� + yzFt2g

�2� Fa1g

�0� + �z2 −
1

3

Feg

�2� � �8�

whereby the expansion series can be continued by summing
for the diagonals the a1g and eg cubic harmonics of order k
multiplied by a fundamental spectrum and for the off diago-
nal components the t1u and t2g cubic harmonics.

The important change between cubic and spherical sym-
metry is that F�2� becomes different �Ft2g

�2� or Feg

�2�� for diagonal
and off diagonal elements in F. Feg

�2� defines the magnetic
linear dichroic spectrum one measures if the sample is mag-
netized along a C4 direction whereas Ft2g

�2� defines the mag-
netic linear dichroic spectrum one measures if the sample is

magnetized along a C3 direction. For very small deviations
from spherical symmetry Ft2g

�2� must be roughly equal to Feg

�2�,
however as we will show below by several numerical ex-
amples one finds for real systems that Feg

�2� and Ft2g

�2� are very
different. On top of that one finds that for realistic param-
eters and large local moments the contribution of Ft1u

�3� cannot
be neglected.

In tetragonal symmetry �D4h� the scattering tensor be-
comes �C4 � �001� , C2 � �100��,

F�xyz� =�
Fa1g

B
�0� +

1

2
�x2 − y2�Fb1g

�2� −
1

2
�z2 −

1

3

Fa1g

B
�2� − zFa2u

�1� − z�z2 −
3

5

Fa2u

�3� + xyFb2g

�2� yFeu

�1� + y�y2 −
3

5

Feu

�3� + xzFeg

�2�

zFa2u

�1� + z�z2 −
3

5

Fa2u

�3� + xyFb2g

�2� Fa1g
B

�0� −
1

2
�x2 − y2�Fb1g

�2� −
1

2
�z2 −

1

3

Fa1g

B
�2� − xFeu

�1� − x�x2 −
3

5

Feu

�3� + yzFeg

�2�

− yFeu

�1� − y�y2 −
3

5

Feu

�3� + xzFeg

�2� xFeu

�1� + x�x2 −
3

5

Feu

�3� + yzFeg

�2� Fa1g
A

�0� + �z2 −
1

3

Fa1g

A
�2� � .

�9�

The difference between Fa1g
A

�0� and Fa1g
B

�0� defines the natural lin-

ear dichroic spectra, also present in a paramagnetic sample.
There are five fundamental spectra up to order k=2 that

describe the magnetic linear dichroism. Let us give examples
how to obtain each one of these spectra. Placing the polar-
ization into the z direction, the dichroism resulting from
changing the magnetization direction from x to z is described
by Fa1g

A
�2� . When the polarization is along �110� and the mag-

netization changes from x to z, Fa1g
B

�2� describes the magnetic

linear dichroism. Placing the polarization along x, changing
the magnetization from x to y will result in a magnetic linear
dichroism determined by Fb1g

�2� . There are two off-diagonal
elements �Fb2g

�2� and Feg

�2�� that define the dichroism when the
magnetization is in the �111� direction: Fb2g

�2� for the dichroism

between polarizations along �110� and �11̄0� and Feg

�2� for

polarizations along �101� and �101̄�.
The isotropic spectrum, i.e., the spectrum measured on a

powdered sample, is given by the trace of the conductivity
tensor. The isotropic spectrum on a single crystal is measured

by averaging three orthogonal polarization directions. For
magnetic systems in cubic symmetry the trace is independent
of the magnetization direction. The isotropic spectrum of a
paramagnet is thus equal to the isotropic spectrum of the
magnetically ordered system. It is interesting to note that the
trace of the conductivity tensor in D4h symmetry becomes
dependent on the magnetization direction. This is due to the
Feg

�2� spectrum in cubic symmetry that branches to an Fa1g
A

�2�

spectrum for z polarization and to an Fa1g
B

�2� and Fb1g

�2� spectrum

for x or y polarization. This finding does not contradict that
the spectrum of a paramagnet only depends on k=0 compo-
nents. It is also valid that the spectrum of a multidomain
sample averaged over all possible spin directions such that
the final magnetic symmetry is at least cubic equals the spec-
trum of a paramagnet. The dependence of the trace of the
conductivity tensor on the spin direction might therefore
come as a surprise. However it is allowed by symmetry,
which can be understood with an example. For a S=1 system
one has three low-energy eigenstates, Sz=1, 0, or −1. With
these three eigenstates any spin direction can be created.
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Within cubic symmetry these three states still belong to the
same irreducible representation �t1� and rotating the spin
therefore does not change the symmetry of the ground state.
In tetragonal symmetry the Sz= �1 states however have a
different symmetry �e� from the Sz=0 state �a2�. Rotating the
spin direction therefore changes the symmetry of the ground
state and thus might change the x-ray absorption spectros-
copy �XAS� spectra. Naively one might expect that this is
unimportant as these states with different Sz will be degen-
erate as long as spin-orbit coupling for the d shell is ne-
glected in the initial state. When spin-orbit coupling is in-
cluded one might still expect that the splitting will be smaller
than the magnetic field applied or the internal exchange
fields present in the sample. But formally the ground-state
symmetry changes depending on the magnetization direction

and therefore the isotropic spectra �the trace of the conduc-
tivity tensor� might have a different line shape depending on
having an e �Sz= �1� or a2 �Sz=0� ground state. The size of
these effects will be shown below by numerical calculations.

In tetragonal symmetry the antisymmetric part of order
k=1 cannot be represented by a single spectrum. The circular
dichroic spectrum will be different for a magnetization direc-
tion parallel or perpendicular to the C4 axes. In scattering
experiments this fundamental spectrum determines the line
shape of the first-order Bragg reflection of an antiferromag-
netically ordered crystal. It will therefore have a large impact
on the interpretation of scattering data.

In orthorhombic symmetry �D2h� the scattering tensor be-
comes �C2 � �001��

F�xyz� =�
Fag

xx
�0� + �x2 −

1

3

Fag

xxA
�2� + �y2 − z2�Fag

xxB
�2� − zFb1u

�1� − z�z2 −
3

5

Fb1u

�3� + xyFb1g

�2� yFb2u

�1� + y�y2 −
3

5

Fb2u

�3� + xzFb2g

�2�

zFb1u

�1� + z�z2 −
3

5

Fb1u

�3� + xyFb1g

�2� Fag
yy

�0� + �y2 −
1

3

Fag

yyA
�2� + �z2 − x2�Fag

yyB
�2� − xFb3u

�1� − x�x2 −
3

5

Fb3u

�3� + yzFb3g

�2�

− yFb2u

�1� − y�y2 −
3

5

Fb2u

�3� + xzFb2g

�2� xFb3u

�1� + x�x2 −
3

5

Fb3u

�3� + yzFb3g

�2� Fag
zz

�0� + �z2 −
1

3

Fag

zzA
�2� + �x2 − y2�Fag

zzB
�2� � .

�10�

II. POLARIZATION DEPENDENCE OF SCATTERED
INTENSITY

The scattering tensor cannot be measured directly. Ab-
sorption, reflection, scattering, or diffraction experiments
measure different parts or combinations of the tensor. An
absorption measurement probes the imaginary part of �,

Iabs = − I�	
i

�� · �i · �� �11�

with � the polarization of the light and �i the conductivity
tensor of atom i. The sum is over all atoms in the sample
�neglecting self-absorption effects� and �i�Fi /�. The real
part can then be obtained from a Kramers-Kronig transfor-
mation.

In a reflection, scattering or diffraction experiment one
measures

Iscat = �	
i

eı�kin−kout�·ri�out
� · Fi · �in�2

�12�

with �in�out� the polarization of the incoming �outgoing� light,
kin�out� the wave vector of the incoming �outgoing� light, ri
the position of atom i, Fi the scattering tensor of atom i and
the sum over all atoms in the sample �neglecting self-
absorption effects�.

The polarization cannot be chosen arbitrarily in a diffrac-
tion experiment, as the k vectors of the light must fulfill the

Bragg condition. The polarization has to be perpendicular to
k, leaving two options for the polarization: � can be in the
scattering plane �� polarization� or � can be perpendicular to
the scattering plane �� polarization�. Theoretically it is easier
to work in Cartesian coordinates and describe the material
properties independent of the measurement geometry. We ex-
press the magnetization direction, the Poynting vectors of the
light as well as the polarization in the same coordinate sys-
tem. It is thus needed to find an easy expression of � and �
polarization in this coordinate frame. We will take that a, b,
and c, �the lattice vectors� and the scattering vector �kout
−kin=q��qx ,qy ,qz�� are known in real-space Cartesian
coordinates.22 In order to define the scattering plane we will
need a second vector that might arbitrarily be chosen but
must be perpendicular to q, which we will call q�. Then �
will be the azimuthal angle, defined as the angle between q�

and the scattering plane. The angle between q and kin will be
written as ��. �The angle between q and kout then is 
−��.�
This leads to the following definitions for the k vectors of the
light and � and � polarization in Cartesian coordinates;

kin � sin�����cos���q̂� + sin����q̂� � q̂�� + cos����q̂ ,

kout � sin�����cos���q̂� + sin����q̂� � q̂�� − cos����q̂ ,

� = �k̂in � k̂out�/sin�2��� ,
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�in = �k̂in � �� ,

�out = �k̂out � �� . �13�

The polarization of the incoming �outgoing� light can be
written in Cartesian coordinates as �in�out�=��+
�in�out�,
with � and 
 complex numbers such that ���+
�
=1.

For a given azimuth angle � �and kin, kout, �, and q� one
can measure four independent spectra for the different pos-
sible 
 and � polarization for the incoming and outgoing
light. These spectra would be �F���2, �F�
�2, �F
��2, and
�F

�2. As it is often experimentally easier to change the
incoming polarization and not use a polarization analyzer of
the outgoing light one might choose to measure four linear

independent spectra in a different fashion. One can use in-
coming � or 
 linear polarized light, 45° linear-polarized
rotated light ��+
� and circular ��+ ı
� polarized light.
These four spectra are also linear independent and, in prin-
ciple, fully determine the scattering tensor on a basis of �
and 
 polarization. It might however not be trivial to obtain
the scattering tensor on a basis of � and 
 polarized light
from the measurements without an outgoing polarization fil-
ter.

For a given polarization the scattering tensor can be ob-
tained in terms of dot and cross products of the polarization
and a unit vector in the local moment direction �m̂�. Hannon
and Blume et al.1 came to the following formula in spherical
symmetry:

F�in�out
= F�0���in · �out

� � + F�1���in � �out
� · m̂� + F�2����out

� · m̂���in · m̂� −
1

3
��in · �out

� �� �14�

which can be derived by dotting the scattering tensor in spherical symmetry for arbitrary spin direction with �out
� and �in and

some algebra.
In cubic �Oh� symmetry F�in�out

becomes

=Fa1g

�0� ��in · �out
� � + Ft1u

�1���in � �out
� · m̂� + Ft2g

�2����out
� · m̂���in · m̂� − ��out

� � m̂� · ��in � m̂��

+ Feg

�2����out
� � m̂� · ��in � m̂� −

1

3
��in · �out

� �� + Ft1u

�3���in � �out
� · �m̂ � �m̂ � m̂ −

3

5

�� �15�

with “�” the standard vector cross product, “·” the vector dot product and “�” stands for vector multiplication per index �a
=b�c⇔ai=bici∀ i�.

In tetragonal symmetry �D4h� one obtains

=Fa1g
B

�0� ��inxy
· �outxy

� � + Fa1g
A

�0� ��inz
· �outz

� � + Feu

�1���in � �out
� · m̂xy� + Fa2u

�1� ��in � �out
� · m̂z�

+ Feg

�2����out
� · m̂xy���in · m̂z� + ��out

� · m̂z���in · m̂xy�� + Fb2g

�2� ���out
� · m̂x���in · m̂y� + ��out

� · m̂y���in · m̂x��

+ Fb1g

�2� 1

2
�mx

2 − my
2���inx

· �outx
� − �iny

· �outy
� � + Fa1g

A
�2� �mz

2 −
1

3

��inz

· �outz
� � + Fa1g

B
�2� �mz

2 −
1

3

��inxy

· �outxy

� �

+ Feu

�3���in � �out
� · �m̂xy � �m̂ � m̂ −

3

5

�� + Fa2u

�3� ��in � �out
� · �m̂z � �m̂ � m̂ −

3

5

�� �16�

with m̂z a vector with only the z component of m̂ nonzero, i.e., �0,0 ,mz / �m�� and �inxy
a vector with only the x and y projection

of �in nonzero, i.e., �inxy
= �	x ,	y ,0�. The orthorhombic �D2h� relations are

=Fag
xx

�0���inx
· �outx

� � + Fag
yy

�0� ��iny
· �outy

� � + Fag
zz

�0���inz
· �outz

� � + Fb1u

�1� ��in � �out
� · m̂z� + Fb2u

�1� ��in � �out
� · m̂y�

+ Fb3u

�1� ��in � �out
� · m̂x� + Fb1g

�2� ���out
� · m̂x���in · m̂y� + ��out

� · m̂y���in · m̂x��

+ Fb2g

�2� ���out
� · m̂z���in · m̂x� + ��out

� · m̂x���in · m̂z�� + Fb3g

�2� ���out
� · m̂y���in · m̂z� + ��out

� · m̂z���in · m̂y��

+ �Fag
xxA

�2� �mz
2 −

1

3

 + Fag

xxB
�2� �mx

2 − my
2����inx

· �outx
� � + �Fag

yyA
�2� �mz

2 −
1

3

 + Fag

yyB
�2� �mx

2 − my
2����iny

· �outy
� �

+ �Fag
zzA

�2� �mz
2 −

1

3

 + Fag

zzB
�2� �mx

2 − my
2����inz

· �outz
� � + Fb1u

�3� ��in � �out
� · �m̂z � �m̂ � m̂ −

3

5

��

+ Fb2u

�3� ��in � �out
� · �m̂y � �m̂ � m̂ −

3

5

�� + Fb3u

�3� ��in � �out
� · �m̂x � �m̂ � m̂ −

3

5

�� . �17�
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III. Mn2+ AND Ni2+ IN CUBIC SYMMETRY

The question that still has to be answered is whether the
differences in intensity between spherical and lower symme-
tries are large enough to be observed. We therefore calcu-
lated a few examples at the transition metal L2,3 edge using
the multiplet crystal-field approach. The parameters for such
calculations are well discussed in the literature,27,34–36 and
we adopted those values. The size of the crystal-field split-
ting between the t2g and eg orbitals, 10Dq, varies from ma-
terial to material, but several trends can be given. For the late
transition metal 2+ oxides such as NiO or CoO one finds
10Dq�1.0–1.5 eV.27,35,37–39 For 3+ late transition metal
oxides such as LaCoO3 the size of 10Dq is larger then for the
2+ compounds due to the smaller charge-transfer energy and
enlarged covalency. For LaCoO3 10Dq is around
�2.0–2.5 eV.40 For early transition metal oxides, which

have slightly larger radial wave functions and no occupied
antibonding eg orbitals, one generally finds larger values of
the crystal-field parameters.27,35,36 For fluorides, which are
less covalent, one finds slightly smaller crystal-field
parameters.34

In order to show the evolution from spherical to cubic
symmetry we first show the evolution of the fundamental
spectra a function of the cubic crystal-field parameter 10Dq.
We also show an example of the magnetic resonant x-ray
diffraction spectra at the Mn L2 edge of an artificial
�MnO�6NiO superlattice including all experimental geom-
etries. For the calculation of the fundamental spectra as a
function of 10Dq we did not include the 3d spin-orbit cou-
pling nor covalency �crystal-field theory instead of ligand-
field theory� in order to make the interpretation easier. While
we did not include spin orbit coupling on the d shell the
magnetization direction directly coincides with the spin di-
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FIG. 1. �Color online� Scatter-
ing tensor of �top� Mn2+ and �bot-
tom� Ni2+ as a function of the cu-
bic crystal-field splitting 10Dq.
Left column shows the a1g com-
ponent, middle column the t2g and
eg component and right column
the t1u component. All graphs are
on the same intensity scale. For
Ni2+ with 10Dq=0 two graphs are
included, once starting from a
spherical ground state �F� and
once starting from the cubic
ground state �A2�. Calculations
done on an ionic model without
spin-orbit coupling on the d shell.
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rection. The spectra are calculated at 0 K and assume a full
magnetization. The calculations have been done with the full
multiplet ligand field theory program XTLS 8.3.35 The funda-
mental spectra can be obtained by doing calculations for spe-

cific spin orientations. On top of those calculations a basic
check has been made where the optical conductivity tensor
has been calculated for many different magnetization direc-
tions. The result is expanded on spherical harmonics in co-
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FIG. 2. �Color online� Top: an artificially created super lattice of six layers of NiO alternated by one layer of MnO stacked in the �111�
cubic crystal direction. Bottom: RXD intensity of the first magnetic Bragg reflection as a function of the azimuthal angle � and resonant
energy. In the left column calculations are done for the scattering tensor in cubic symmetry. In the middle column spherical symmetry has
been created by taking F�1� proportional to the average of Fxy, Fzy and Fxz as calculated in cubic symmetry. The calculations are done for
incoming �, 
, linear 45° rotated ��+
�, and circular ��+ ı
� polarized light.
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ordinates of the magnetization direction. Both methods gave
the same results within the numerical accuracy of the calcu-
lations.

In the top panel of Fig. 1 we show the L2,3 edge x-ray
absorption spectra of Mn2+ as a function of the cubic split-
ting parametrized by 10Dq. The top spectrum has 10Dq=0
and is therefore in spherical symmetry. The ground state has
always five electrons with parallel spin occupied and the
ground-state wave function is independent of the crystal-field
splitting. All changes in the spectra are due to final-state
effects whereby the 2p core hole is excited into a t2g or eg
electron and the energy difference between the two changes
as a function of 10Dq. The left panel shows Fa1g

�0� , which is
the isotropic spectrum and the spectrum of the paramagnetic
phase. These spectra are the same as published earlier by
de Groot et al.34 The middle column shows Feg

�2� and Ft2g

�2�.
These two spectra describe the magnetic linear dichroic ef-
fect. In spherical symmetry �top curve, 10Dq=0� these two
spectra are the same. However when a cubic distortion is
present these two spectra become different. For a commen-
surate spin spiral one would expect a different resonant pro-
file at the second order Bragg peak depending on the phase
of the spiral with respect to the cubic crystal structure, i.e., a
spiral with period 4z and the spins in the x, y, −x, −y direc-
tion would show an �Feg

�2��2 like second-order resonance pro-
file whereas a spiral at the same q vector but shifted in phase
such that the spin directions are x+y, −x+y, −x−y, x−y
would show an �Ft2g

�2��2 like second-order resonance profile.
For x-ray absorption this has implications for the measured
magnetic linear dichroism as explained previous by Arenholz
and van der Laan et al.14–16

The right column of Fig. 1 shows the Ft1u

�1� and Ft1u

�3� spectra.
In Oh symmetry the k=1 spectra branch to a single represen-
tation �a t1u�. Additionally angular momentum �k� is not a
good quantum number in cubic symmetry and therefore the
Ft1u

�3� spectra becomes nonzero. For spectroscopy this means a
difference in the magnetic circular dichroism spectra for a
system magnetized in the �001� direction where one mea-
sures R��t1u

1 +2 /5�t1u

3 � and the �111� direction where the
measured spectrum is R��t1u

1 −4 /15�t1u

3 �. Which has experi-
mentally been observed on Mn doped GaAs crystals.41 For
resonant diffraction at an antiferromagnetic Bragg reflection
this will lead to a different resonance profile depending if the
spins are ordered in the �001� or �111� direction. It will also
lead to a different azimuthal dependence of the scattered in-
tensity at an antiferromagnetic Bragg reflection. For spins

oriented in the �112̄� direction ferromagnetically aligned in
�111� planes, antiferromagnetically stacked in the �111� di-
rection �as depicted in the top panel of Fig. 2� and a scatter-
ing geometry such that ��=
 /6 one finds a scattered inten-
sity proportional to �F�3� / �2�6��sin����10F�1�−F�3�� /20�2 in
the 
−� ��−
� scattering channel. For different spin align-
ments the �-independent scattering due to the F�1� scattering
tensor would be related to the projection of the spin on the q
vector. Measurements at a single resonant energy could thus
lead to incorrect determination of the spin direction. How-
ever F�3� has a different � dependence than F�1� and this can
be used to obtain the correct spin direction from such experi-
ments.

The size of this effect on the measured intensity can be
seen in Fig. 2 where resonant x-ray diffraction intensities for
a �NiO�6MnO multilayer system have been calculated in-
cluding the experimental geometry. The calculations are
done for scattering at the first-order magnetic Bragg reflec-
tion at the Mn L2 edge. The distance between two Mn layers
is �7�2.4 Å, which results in a scattering angle �� as de-
fined in Eq. �13� of ��=73.5° at a photon energy of 650 eV.
The vector q points in the �111� direction. The vector q� has

been chosen to be in the �112̄� direction, which then defines
the definitions of � and 
 polarization as a function of the
azimuthal angle � �see Eq. �13��. It is assumed that one
scatters of a single magnetic domain as described above and
depicted in the top panel of Fig. 2. The scattered intensity for
different azimuth angles and resonant energies at the Mn L2
edge can be seen in the bottom panels of Fig. 2. The left
columns show the scattered intensity as calculated in Oh
symmetry. The ligand-field parameters are the same as have
been used in the literature before.35 There is a distinct differ-
ence between incoming �, 
, polarized light, 45° linear-
polarized rotated light ��+
�, and circular ��+ ı
� polarized
light as can be seen in the four different rows. The middle
column shows the calculated spectra assuming spherical
symmetry for the scattering tensor. Spherical symmetry has
been created by averaging the calculated scattering tensor in
cubic symmetry. In spherical symmetry the scattering cross
section is given by a single function, namely F�1�. This func-
tion has been taken to be the average of the calculated tensor
elements F�1�= ��6 /4��Fxy +Fyz+Fxz�. The right column
shows the difference between spherical and cubic symmetry.
The intensity scale is the same for all graphs in a single row.
One can see that on average there is a shift of diffracted
intensity from the low to higher energy peak when going
from spherical to cubic symmetry. This is not a general fea-
ture but depends on the specific geometry. One also finds that
there are clearly visible changes in the angular dependence.
For � polarized light one finds in cubic symmetry a local
maximum of the scattered intensity at �=
 whereas in
spherical symmetry this maximum is not visible. Further-
more as one can see clearly in the graphs for 
 polarized
light, there is a different azimuthal independent intensity in
both cases. The differences can become around 40% of the
intensity but the general line shape is not hugely changed,
however for a system starting with a d5 configuration and
basically having a spherical ground state the differences are
surprisingly large. This does not mean that all scattering data
so far have to be reinterpreted. Whenever the spin orders in a
high-symmetry direction ��001� or �111�, for example� one
would not see a difference between the calculations done in
spherical symmetry or cubic symmetry. This becomes imme-
diately clear if one considers the scattering tensor for such
spin directions as given in Eq. �8� and compares this to the
scattering tensor as found in spherical symmetry �Eq. �5��.
For most systems the spins do order in high-symmetry direc-
tions and thus, as long as the symmetry is high the formulas
as derived in spherical symmetry, although not formally
valid, still give correct answers. For MnO and NiO the spin

orders in �112̄� directions and thus the deviations between
spherical and cubic symmetry become important.
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The bottom panel of Fig. 1 shows the fundamental spec-
tra, for Ni2+. The major difference between a d8 system
�Ni2+� and a d5 system �Mn2+� is that for a d8 system the
ground state is modified when a cubic crystal field is in-
cluded. In spherical symmetry both the eg and t2g orbitals are
equally occupied, in cubic symmetry this is not the case.
When 10Dq=0 and a spherical charge distribution is as-
sumed for the initial state one finds that the Feg

�2� and Ft2g

�2�

spectra are equivalent �middle panel top curve labeled as F�.
If one however assumes a t2g

6 eg
2 orbital occupation as one

would find as a ground state in cubic symmetry one finds a
large difference between the Feg

�2� and Ft2g

�2� spectra �middle
panel second curve from top labeled as A2�. It is important to
note the difference between Mn2+ and Ni2+. For a perturba-
tion that does not lift the ground-state degeneracy the
changes in spectra scale with the size of the distortion
whereas for a perturbation that lifts the ground-state degen-
eracy there will be an immediate large effect on the spectral
line shape as long as the distortion is bigger than tempera-
ture. The symmetry breaking is important for orbitally or-
dered systems. Above the ordering temperature, the system
can be described by the scattering tensor in the higher sym-
metry. Although the distortions may be small in the orbitally
ordered phase, breaking the ground-state symmetry will have
an immediate effect on the spectra. Thus even small distor-
tions can lead to relevant changes in the scattering tensor.

IV. Ni2+, Mn3+, AND Cu2+ IN TETRAGONAL
SYMMETRY

In tetragonal symmetry the F�0� spectrum branches to Fa1g
A

�0�

and Fa1g
B

�0� , the F�1� spectrum branches to Fa2u

�1� and Faeu

�1� , and the

F�2� spectrum branches to Fb2g

�2� , Feg

�2�, Fb1g

�2� , Fa1g
A

�2� , and Fa1g
B

�2� . To

estimate the numerical differences between these spectra at
the L2,3 edge we again did crystal-field calculations. We did
calculations for a variety of different crystal-field parameters.
Experimental values can depend strongly on the material at
hand. For strained thin films of CoO or NiO one can find
tetragonal distortions of the size of 10–100 meV.39,33 For
early transition metal compounds similar distortions can give
rise to substantial larger crystal-field splittings on the order
of several 100 meV.42,43 Much larger crystal-field splittings
are found in systems with an open eg subshell and for several
layered cuprates structures an energy difference of
�1–3 eV between the dx2−y2 and dz2 hole has been found.44

The top panel of Fig. 3 shows the spectra for Ni2+ as a
function of tetragonal distortion. In the middle we show cu-
bic symmetry and toward the top �bottom� a tetragonal con-
traction �elongation�. The Ni2+ ground state does not change
as a function of tetragonal distortion and therefore the differ-
ence between spectra that branch from the same irreducible
representation in cubic symmetry scale with the size of the
tetragonal distortion. The left panel shows the natural linear
dichroism in tetragonal distorted Ni2+ which has been dis-
cussed before.33 Note that for large tetragonal distortions it
can have a similar magnitude as the magnetic dichroism. The
second panel from the left shows the magnetic linear dichro-

ism that branches from the cubic eg representation. Interest-
ingly, three fundamental spectra represent the linear dichro-
ism that branches from the eg representation in cubic
symmetry and for feasible distortions they are all different.
The trace of the conductivity tensor, or the isotropic spec-
trum, is thus dependent on the magnetization direction and
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FIG. 3. �Color online� Fundamental spectra of the elastic scat-
tering tensor for Ni2+ �top panel�, Mn3+ �middle panel�, and Cu3+

�bottom panel� as a function of tetragonal crystal-field splitting �eg

defined as the energy difference between the dz2 and dx2−y2 orbital.
��t2g=1 /4�eg�. �eg�0 stands for a tetragonal contracted system,
i.e., the dz2 orbital higher in energy than the dx2−y2 orbital.
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the difference is large enough to be detectable. The isotropic
spectrum in D4h symmetry is given by �1 /3��2Fa1g

B
�0� +Fa1g

A
�0�

+ �z2−1 /3��Fa1g
A

�2� −Fa1g
B

�2� �� and �Fa1g
A

�2� −Fa1g
B

�2� � is, as clearly can be

seen in Fig. 3, nonzero. The linear dichroism that branches
from the cubic t2g representation is shown in the middle
panel. The second panel from the right shows the circular
dichroic spectra. Differences in the antisymmetric part of the
scattering tensor are almost always neglected, but for reason-
able distortions, present in e.g., layered perovskite structures
large differences can be seen between the Fb2u

�1� and Feu

�1� spec-
tra. Going beyond Oh symmetry thus also affects the anti-
symmetric part of F.

The middle panel of Fig. 3 shows the spectra of Mn3+ as
a function of tetragonal distortion. Mn3+ has a d4 configura-
tion and depending on the distortion it will have an occupied
dx2−y2 orbital �top� or an occupied dz2 orbital. As in the case
of Ni2+, for the spherical to cubic distortion, one has an im-
mediate effect for all fundamental spectra and, in particular,
also in the antisymmetric part of the scattering tensor. This is
important for magnetic circular dichroism and RXD in all
kinds of manganates where orbital order and magnetic order
coexists.

The bottom panel of Fig. 3 shows the fundamental spectra
of the scattering tensor for Cu2+ a d9 configuration. This is a
particularly simple and instructive example as all calcula-
tions can be done by hand and everything can be done in a
one particle picture. The ground state has one hole in the d
shell and the final state one hole in the 2p shell. The ground-
state hole in the d shell will either be in the x2−y2 orbital
�bottom of Fig. 3� or in the z2 orbital �top of Fig. 3�. For the
natural dichroism �left panel, Fa1g

xx
�0� and Fa1g

zz
�0� � one finds that for

a dx2−y2 hole the Fa1g
zz

�0� spectra are zero. This can be understood

as one cannot excite into the dx2−y2 hole with z polarized
light. For a dz2 hole there is a ratio of 1 to 3 for the different
fundamental spectra. Note that the spectra are independent of
the size of the distortion and only depend on the symmetry of
the ground state. The symmetric part of the magnetic scatter-
ing tensor is zero for a d9 configuration, which is a general
property of any Kramers doublet. The spin-up and spin-down
state are related by time-reversal symmetry and therefore
should have the same symmetric part of the scattering tensor.
At the same time the sum of the scattering tensor for the
spin-up and spin-down state should be equal to the paramag-
netic tensor which is given by the F�0� components. There-
fore the symmetric magnetic part of the scattering tensor
should be zero for a ground-state Kramers doublet. The an-
tisymmetric part shows a very strong crystal orientation de-
pendence. For a dx2−y2 hole in the ground state, the Fa2u

�1� spec-
tra is finite but the Feu

�1� spectrum is zero. This is again related
to the fact that one cannot excite into the dx2−y2 hole with z
polarized light.

When one now calculates the azimuthal dependence of a
magnetic Bragg reflection at the Cu L2,3 edge for real sys-
tems these big differences in the scattering tensor should lead
to a huge difference in the scattered intensity between calcu-
lations in spherical symmetry and tetragonal symmetry. In
Fig. 4 we show such calculations for NaCu2O2. This material
shows a magnetic spiral with a wave factor of �0.5 0.227 0�
in reciprocal lattice units. A possible magnetic structure,
where all Cu atoms within the unit cell contribute construc-
tively to the magnetic order at this wave vector is shown in
the left panel of Fig. 4. In a Cartesian coordinate system the
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FIG. 4. �Color online� Left: crystal structure of NaCu2O2 including a possible local magnetization direction, which is used for the RXD
calculations. Right: RXD calculations of the scattered intensity as a function of the azimuthal angle, for incoming �, 
, linear 45° rotated
��+
�, and circular ��+ ı
� polarized light. Whereby the scattering tensor once has been assumed to have tetragonal symmetry and once has
been assumed to have spherical symmetry.
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scattering vector is given by q̂= �0.721 0.692 0� and at the
Cu L3 edge ��=41.4°. We define q� to be in the �001�, which
defines the experimental geometry as given in Eq. �13�. The
local spin direction depends on the position of the atom and
can be written as S= �0,sin�rq� , cos�rq�� with rq being the
distance in the direction of q in units of the wave vector of
the magnetic ordering. The difference between the scattered
intensity as calculated in tetragonal or spherical symmetry is
huge as can be seen in the left two panels of Fig. 4. We show
calculations for incoming �, 
, polarized light, 45° linear-
polarized rotated light ��+
� and circular ��+ ı
� polarized
light. There is no simple relation between the calculations
done in the artificially spherical symmetry and the calcula-
tions done in tetragonal symmetry. This could have been
expected already due to the huge difference between Feu

�1� and
Fa2u

�1� . The expression for the RXD intensity in spherical sym-
metry is proportional to �F�1���in��out

� ·m̂��2 �Eq. �14�. or
Hannon et al.1�. We have shown in Eq. �16� that in D4h
symmetry this should be �Feu

�1���in��out
� ·m̂xy�+Fa2u

�1� ��in

��out
� ·m̂z��2. For the cuprates one finds that Feu

�1�=0. For the
cuprates, the RXD spectra are thus only sensitive to the out-
of-plane moment. This theoretical prediction has recently
been experimentally confirmed by Leininger et al.25 When
orbital order is present it is for the determination of the mag-
netic structure with the use of RXD of extreme importance to
consider the correct crystal symmetry when evaluating the
magnetic scattered intensity.

V. CONCLUSION

We have shown that the fundamental spectra of the scat-
tering or conductivity tensor are strongly influenced by the
crystal-field symmetry at the transition metal L2,3 edge. Both
the symmetric part as noted previously14–16 but also the an-
tisymmetric part show strong deviations from the spectra cal-
culated in spherical symmetry. When the symmetry is low-
ered the fundamental spectra known from spherical
symmetry branch into several different spectra. At the same
time higher-order spectra become nonzero and are important.
In general more fundamental spectra are needed in order to
describe the conductivity tensor as one might have expected.
We have shown to what extent the crystal symmetry effects
the magneto-optical effects and how they influence RXD and
XAS experiments. The magnetization direction dependence
of the conductivity tensor in our numerical examples is not
due to magnetic anisotropy of the valence electrons. We ne-
glected the 3d spin-orbit coupling and the spin is thus free to
rotate. The anisotropy is induced by the spin-orbit coupling
of the 2p-core-hole that couples via the Coulomb repulsion
�direct as well as exchange part� with the valence electrons.

The reason for the deviations from the simple rule that the
scattered intensity at an antiferromagnetic Bragg reflection is
proportional to ���in��out

� � ·m̂�2 is given by the fact that in
spherical symmetry there is only one tensor element that
describes the antisymmetric part of the conductivity tensor.
In cubic symmetry this already becomes more complicated
as F�3� cannot be neglected if S is larger then 1. In tetragonal
or lower symmetry also F�1� branches to different spectra.

When the spin aligns in a high-symmetry direction of the
crystal there still will be only one tensor element describing
the antisymmetric part of F and therefore the simple scatter-
ing rules as derived in spherical symmetry will still hold.
Even when this tensor element is made from a linear combi-
nation of F�1� and F�3�; as long as their ratio is the same for
all polarizations the simple rules hold. In most cases the,
single ion anisotropy will dictate the preferred direction of
the magnetic moments, aligning it along high symmetry di-
rections. In this case the simple rules are valid.

Local magnetic moments are not always aligned in a
high-symmetry crystal direction. Well known examples are
the simple rocksalts such as NiO, MnO, and CoO. An other
class would be magnetic spiral structures as found in the
cuprates and manganates. In these cases a more involved
spectral line-shape analysis is needed in order to determine
the magnetization direction. One then cannot measure the
scattered intensity at a single photon energy, but needs to
measure the energy dependence at all azimuthal directions in
order to obtain more information. By comparing the line
shape to theory at different azimuthal directions or by the use
of sum rules one then can still obtain the full information as
present in the data.

The present calculations could be proved by magnetic cir-
cular and linear dichroism experiments. Temperature depen-
dence of the magneto-optical effects as well as nonfull mag-
netization of the sample will be discussed in a future work.
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APPENDIX: RELATION TO SPHERICAL TENSORS
FORMALISM

Within the current paper, we have expressed the scattering
tensor as a 3�3 matrix on a basis of linear x, y, and z
polarized light. This is the standard notation as used within
modern optical theory.29–31 For core level spectroscopy there
are however several theoretical works that use a coupling of
spherical tensors as presented by Luo et al.45 Within this
appendix we will present a relation between these two nota-
tions. As within the rest of the paper we restrict ourselves to
dipole excitations only. First of all one can change the basis
of the scattering tensor from linear polarized light to circular
polarized light by a unitary transformation: x= �l−r� /��2�,
y= ı�l+r� /��2�, z=z. The basis set of circular polarized light
represents an angular momentum vector with l, z, and r equal
to ml=−1, ml=0, and ml=1, respectively. One can couple the
angular momentum vector of the incoming and outgoing
light �left and right hand side of the scattering tensor� to a
single vector of angular momentum L=0, 1, and 2. This
again represents nine components for the scattering tensor
�L=0 has one element, L=1 has three elements with different
ML values, and L=3 has five elements with different ML
values�. The relation between FL,ML

and Fij with i, j
� 
x ,y ,z� is
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F0,0 � Fs =
1

3
�Fxx + Fyy + Fzz� ,

�1

2
�F1,−1 − F1,1� � Fp,x =

1

2
�Fyz − Fzy� ,

ı�1

2
�F1,−1 + F1,1� � Fp,y =

1

2
�Fzx − Fxz� ,

F1,0 � Fp,z =
1

2
�Fxy − Fyx� ,

ı�1

2
�F2,−1 + F2,1� � Fd,yz =

1

2
�Fyz + Fzy� ,

�1

2
�F2,−1 − F2,1� � Fd,xz =

1

2
�Fzx + Fxz� ,

ı�1

2
�F2,−2 − F2,2� � Fd,xy =

1

2
�Fxy + Fyx� ,

F2,0 � Fd,z2−1/3 = Fzz − Fs,

�1

2
�F2,−2 + F2,2� � Fd,x2−y2 = Fxx − Fyy . �A1�

In Eq. �2� we expand the scattering tensor on the local
magnetization direction. This can naturally be done for either
of the two formulations of the polarization. In spherical sym-

metry there is a particular simple relation between the scat-
tering tensor expanded on the magnetization direction and
the coupling of the polarization in spherical tensors. One
knows that by symmetry the scattering tensor should trans-
form the same as the coupled polarization vectors and thus
the scattering vectors expanded on spherical tensors: FL,ML

km

are only nonzero for L=k and ML=m. One furthermore
knows that FL,ML

=FL,Ml�
which then defines Eq. �5�.

When the crystal symmetry is considered, and the calcu-
lations are not done in spherical symmetry, angular momen-
tum is not strictly conserved for the electrons only �one can
transfer angular momentum to the entire crystal�. This allows
FL,ML

components to depend on the expansion of the magne-
tization direction with L�k. In the coupled tensor notation
FL=2,ML

components do contain the natural linear dichroism.
The expansion coefficients in the magnetization direction
with k�0 however do all vanish for a paramagnetic sample
as the full angular integral over a spherical harmonic for all
but the spherical harmonic with k=0 equal to zero. The Fij

�k=2�

components therefore only include magnetic linear dichro-
ism and no natural linear dichroism. The natural linear di-
chroism is all contained in the different Fij

�k=0� components.
The FL=2,ML

components in tetragonal and lower symmetry
do depend also on k=0 expansions in the magnetization di-
rection. By expanding the scattering tensor strictly on the
magnetization direction one can separate the natural and
magnetic linear dichroism. The fundamental spectra as de-
fined in this paper are not equivalent to tensor elements of
the scattering tensor but describe the magnetization direction
dependence of the scattering tensor. In spherical symmetry
this is equivalent but for real crystal symmetries there are
more expansion coefficients that determine a single scatter-
ing tensor element.
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